过渡态
本质上,电子、原子核的运动是相关而不可分割的,求解薛定谔方程得到的是描述二者状态的总波函数和体系的总能量。在量子化学中,为简化问题,一般采用BO(Born-Oppenheimer)近似。由于电子比原子核轻得多,其运动速度远快于原子核,核坐标改变过程中的每一时刻电子的状态可以立即调整以使能量最低,而以电子的视角看原子核就是不动的势场,所以有理由将原子核运动与电子的运动分离开来。可以在每一组确定的核坐标情况下求解电子的薛定谔方程,电子能量加上核间互斥能即得到此几何结构下的分子总能量。这种BO近似的做法由于在求解电子薛定谔方程时忽略了核运动,所以也称为核不动近似。在BO近似下分子的能量是核坐标的函数,系统地变化核坐标,随之变化的能量就构成了势能面(potential energy surface,PES)。
过渡态结构指的是势能面上反应路径上的能量最高点,它通过最小能量路径(minimum energy path,MEP)连接着反应物和产物的结构(如果是多步反应的机理,则这里所指反应物或产物包括中间体)。对于多分子之间的反应,更确切来讲过渡态结构连接的是它们由无穷远接近后因为范德华力和静电力形成的复合物结构,以及反应完毕但尚未无限远离时的复合物结构。确定过渡态有助于了解反应机理,以及通过势垒高度计算反应速率。一般来讲,势垒小于21kcal/mol就可以在室温下发生。
在势能面上,过渡态结构的能量对坐标的一阶导数为0,只有在反应坐标方向上曲率(对坐标二阶导数)为负,而其它方向上皆为正,是能量面上的一阶鞍点。过渡态结构的能量二阶导数矩阵(Hessian矩阵)的本征值仅有一个负值,这个负值也就是过渡态拥有唯一虚频的来源。若将分子振动简化成谐振子模型,这个负值便是频率公式中的力常数,开根号后即得虚数。
分子构象转变、化学反应过程中往往都有过渡态的存在,即这个过程在势能面上的运动往往都会经历满足上述条件的一点。化学反应的过渡态更确切应当成为“反应过渡态”。需要注意的是化学反应未必都经历过渡态结构。
由于过渡态结构存在时间极短,所以很难通过实验方法获得,直到飞秒脉冲激光光谱的出现才使检验反应机理为可能。计算化学方法在目前是预测过渡态的最有力武器,尽管计算上仍有一些困难,比如其附近势能面相对于平衡结构更为平坦得多、低水平方法难以准确描述、难以预测过渡态结构、缺乏绝对可靠的方法(如优化到能量极小点可用的最陡下降法)等。
搜索过渡态的算法一般结合从头算、DFT方法,在半经验、或者小基组条件下,难以像描述平衡结构一样正确描述过渡态结构,使得计算尺度受到了限制。结合分子力场可以描述构象变化的过渡态,但不适用描述反应过渡态,因为大部分分子力场的势函数不允许分子拓扑结构的改变,虽然也有一些力场如ReaxFF可以支持,有的力场还有对应的过渡态原子类型,但目前来看适用面仍然较窄,而且不够精确,尽管更为快速。
注:严格来说,“过渡结构”是指势能面上反应路径上的能量最高点,而“过渡态”是指自由能面上反应路径上的能量最高点,由于自由能变主要贡献自势能部分,所以多数情况二者结构近似一致。为了计算上的简单,常以势能面近似表达自由能面,以下述方法得到的势能面上反应路径上的能量最高点做为过渡态。但随着温度升高,往往熵变的贡献导致自由能面与势能面形状发生明显偏离,从而导致过渡结构与过渡态明显偏离,两个词就不能混用了,此时下述方法应该用在自由能面上找真正的过渡态。但本文不涉及相关问题,故文中过渡态、过渡结构一律指势能面上反应路径上的能量最高点。